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Abstract—A theoretical investigation is undertaken into the dynamic instability of complete
spherical shells which are loaded impulsively and made from either linear elastic or elastic-
plastic materials. It is shown that certain harmonics grow quickly and cause a shell to exhibit a
wrinkled shape which is characterized by a critical mode number. The critical mode numbers
are similar for spherical and cylindrical elastic shells having the same R/A ratios and material
parameters, but may be larger or smaller in an elastic-plastic spherical shell depending on the
values of the various parameters. Threshold velocities are also determined in order to obtain
the smallest velocity that a shell can tolerate without excessive deformation. The threshold
velocities for the elastic and elastic—plastic spherical shells are larger than those which have been
published previously for cylindrical shells having the same R/A ratios and material parameters.

NOTATION

h shell thickness
t time
E, E, Young’s and tangent moduli, respectively
R mean radius of spherical shell
Vo initial impulsive velocity
5 201 —v)
R A+1—2v
&,, 0. equivalent yield strain and equivalent stress, respectively

E/E,
An n(n+1)
v, p Poisson’s ratio and density, respectively
ay yield stress

) a( )joror o )fer
( )x @ )ox, where x=0,¢,7ory.

INTRODUCTION

A theoretical procedure was developed in[1] in order to examine the dynamic plastic buck-
ling of complete spherical shells which were loaded with an external impulsive velocity and
made from a rigid-plastic material. These theoretical predictions are expected to be useful
for thin-walled spherical shells with small R/A ratios (e.g. 10 < R/h<60). However, material
elasticity exercises an important influence on the dynamic response of spherical shells with
large R/h ratios (e.g. R/h>350). Thus, the dynamic behavior of complete spherical shells
which are made from either linear elastic or elastic—plastic materials is investigated herein.
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An examination is made of the influence of small deviations from sphericity of the shell
and the effect of small perturbations in the initial uniform velocity field. It turns out that
certain harmonics grow very quickly and cause a spherical shell to exhibit a characteristic
wrinkled shape. It is assumed in the elastic-plastic case that the strains which are associated
with the perturbed state are much smaller than those associated with the predominant
motion. Thus, no unloading of the shell material occurs before the time when all the initial
kinetic energy is absorbed by the spherical shell in the predominant mode. Moreover. it is
further assumed that the wrinkled pattern in the shells is established prior to this time and is
not modified by subsequent unloading.

BASIC EQUATIONS

A set of membrane strain and curvature displacement relations were developed in 2]
for arbitrarily shaped thin shells with strains that were small compared to unity and with
transverse deflections W which were much larger than the in-plane displacements U and V.
The usual thin shell assumption #/R < 1 was introduced during the theoretical analysis.
However, if this thinness simplification was delayed in the analysis until the final expansions
for the strains, then the membrane strain rates for the particular case of a spherical shell are

. , 1 ,
€y = (U_¢— W+EW'¢ W_d,)/'R (la)
ég=(cosec ¢V y+cot ¢ U— W+cosec? oW 4 W,/ R)/R (Ib)

ég9=[cosec ¢ U y—cot ¢ V+ V ,+cosec p(W , Wy+ W o W ,)/RI/R (1c)

which agree with the predictions of Ref.[2], while the curvature rate expressions are

Kp=(W+ W 0/ R (1d)
Ko =( W cosec?p W45+ cot ¢ W)/ R? (le)

and
Kgg=2[cosec ¢ W 4—cot ¢ cosec ¢ W ,]/R? (1f)

which are the same as Ref.[2] except for the presence of the W/R* tems in equations (1d)
and (le) and the absence of any terms containing the in-plane displacements U and V. The
present approach also leads to non-linear terms in the curvature-displacement expressions
but these are not considered herein. The displacements are defined as shown in Fig. |
and (")=3( )/0r where r is time. The principle of virtual work may be used to obtain the
equilibrium equations

Ny 5 +C0t G(Ny— Ng)+cosec dNyg 4 — phRU + PLR =0 (2a)
cosec pNg g + Nygy + 2 COL Ny — phRV + P, R = (2b)
and
R(Ny+ Ng)+ Ny(W 4+ cot gW ;) + Ny cosec’ g W 44
+¢0seC PN yo(W 4o+ W) +(Ny o W o+ W gNyy 4 cOsEC @+
+ W 4Ny 0€0s€C ¢+ cosec’ dNy o W o) — (Mg 55+
+2 cot pM 4 —cot M, 4+ 2My+cosec’ Mg gy +
+2 cosec PM 4 49+ 2 cOsec @ cOt GM yg o) — RPph W+ R*P3 =0 (2¢)
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(b)

Fig. 1. (a) Displacements and (b) membrane forces, bending moments and external loads on a
spherical shell.

which are consistent with the strain and curvature expressions (1a)-(1f) provided the in-
fluence of transverse shear deformation is disregarded.

It may be shown by direct substitution that the strain and change of curvature relations
given by equations (1a)-(1f) satisfy the compatibility equation

€g. 50+ COSECT Pé4 g9+ 2 COt Pé,y ,—cOt P&y 4+ 26,
— COSEC Péyp 49— COSEC P COL Péyg o+ R(Ky+Kg) =0 (3)

for infinitesimal displacements.

Constitutive equations for arbitrarily shaped shells which are made from an elastic—
plastic material are developed in Ref. [3] and discussed briefly in the Appendix which accom-
panies this article. Equations (1.20a)—(1.21c) of Ref. [3] can be written for a spherical shell
in the form

. h : o _Eh .. ;

Ny =1 [Céy+ Crady), No = [Cide+Ci3é,] (42, b)
. Eh . . ER . ,

N¢0 = K C3e¢9, Md’ = m [C2K¢+ CIZKO] (40’ d)
. ER? . . . End .

MG = m[C1K9+ C12K¢]s M¢9 = 12A C3K¢8 (46’ f)
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where
Ci=C,=/+3, CL=4v—(-1) (5a-c)
Cy=A+1-2v,A=EJE,, A=2(1+v)(A+1-2v) (54, f)

when it is assumed that g=0,/5, = | for a complete spherical shell loaded uniformly.
It is assumed that the displacements in a complete spherical shell consist of dominant
(W, U = V =0) and perturbation (W', U’, V') parts so that

W(g,0,7) = W(1) +W'(¢, 0, 1) (6a)
U(¢,0,1) = U'(¢. 0. 7) (6b)

and
Vg, 0, 0)=V"(¢, 0, 7). (6¢)

Thus, the dominant strains and curvature changes are

és=e,=— W/R, 250 =0 (7a—c)

and
Ky =Kg=W/R*, K4 =0 (8a—c)

respectively, while the corresponding perturbation quantities are given by equations
(1a)-(1f) with primes. Similarly,

Ny(, 0, 1) =N(t)+ Ny(¢. 0, 7) (9a)
Ny(. 0, ©) =N(@)+ Ny(¢, 0, 1) (9b)

and
Ngol9, 0, ) =Nyo(9, 0, 1) (9¢)

together with equations (9d)—(9f) for the bending moments which are the same as equa-
tions (9a)-(9¢) except with M replacing N. If equations (6) and (9) are substituted into
equation (2¢) then the dominant and perturbation transverse equilibrium equations are

2N/R=2M/R*+P; —phW =0 (10a)
and

R(Ny+Ng)+N(W' 45+cot W' ,+cosec’ ¢ W' g5) —
— [Mg 45 + 2 cOt §My 4 — cOt $My 5 +2M; + cosec’ pM g9
+2 cosec YM g o5 + 2 cOsec ¢ cot pMyg o] — phR? W =0 (10b)

respectively, when neglecting higher order quantities.
It may be shown that the in-plane equilibrium equations (2a) and (2b) are satisfied iden-
tically when
. 1 . 1
N, = re [F + cosec® ¢pF gy + COLPF 4], Nyp= = [F+ F 44 (11a, b)

and
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. 1
Nyp=— = cosec P[F 49 — cot ¢ F 4] (11¢)

where F is a stress rate function and U = V = P, = P, = 0. Now, substituting equations
(4a)-(4c) and (11a)—(11c) into the compatibility equation (3) gives

41 — vV + 2u + [C(VZ + 1) — C,)(V2 + 2)F =0 (12a)
where
W g FU-w _C :
u=%> F=—mre “oi-w T TR! (12b-¢)
V() =()pp + cot ¢( ) 4+ cosec® ¢( ) gp. (12f)

If equations (1, 4, 7-9 and 11) are substituted into equations (10a) and (10b), then the
transverse equilibrium equations (10a) and (10b) can be written in the non-dimensionalized
form

—uy L. + 21 +a2)f §.dt+P=0 (132)
and
~ C ,
o = (V2 + DF = [V, +2 | (V2 1)+ 2| (2 4 Du =0 (13
1
where
w . N —-v ~ P3R(1 ~-v) , 1 (h\?
== = > P = ’ =35 l5 —
R T T En T (R) (14a-d)
(1 —v) (oN
2 =1
p 1= and ag = o (14e, 1)
STATIC BUCKLING
Equation (13a) for the static case predicts
6 =—P)2 (15)
when o < 1. If « and F are written in the series expansions
u = a,, P,(cos ¢) + P"(cos ¢)(a,,, cos ml + b,,, sin mb) (16a)t
and
F =c,, P(cos ¢) + P™(cos ¢)(c,, cos mf + d,, sin m6) (16b)t
where
ly=nn+1) (16c)

and P, and P} are Legendre and associated Legendre polynomials of degree » and order m,
then equations (12a) and (13b) give

[Cl(ln - 1) + CIZ](ln - 2)Cmn - 4(1 - V)(/ln = 2)amn,t =0 (173)

t The summation convention is used for the integers mand n withO0<n< wand 1l <m<n.
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and

SF

(= e + @) 4020 (7 =1 =
1

)un - 2)]%,1 —0 ()

respectively. Two additional equations are also obtained but these are identical to equations
(17a) and (17b) provided b,,, and 4, are substituted for a,,, and c,,. If ¢, is eliminated
from equations (17a) and (17b) then

[((’T)S + &)'n)amn],t =0 (183)
where
s M =VG=D) [ Cu) o ]
o5 = CO.—D+C, +a*f aol(,,, 1 C‘)(,l,l )| (18b)

Now, when substituting equation (15) into (18a) and integrating it may be shown that static

5 2 ((1 —v))H/2
buckling occurs if P = 2@,/4, and attains a minimum value when 4,= —E{(c V)

& 19
vided 7, > 1. Thus, 4, = 2[3(1 — v?)]"/2R/h for the linear elastic case (1 = 1) which agrees
with the theoretical predictions of Koiter [4] and with Ref.[5] when R/A > 1. The buckling

pressure for an elastic—plastic spherical shell is therefore

pro-

2 1
P~4FE |- - 19
(R) V60 +1 =201 +v) (15)

which agrees with the theoretical predictions of Bijlaard[6], Batterman[7] and Hutchinson[8]
and with Refs.[4, 5] for the linear elastic case (4 = 1).

DYNAMIC BUCKLING

The solution of the predominant transverse equation of motion (13a) during the initial
elastic response of a spherical shell is
VO
C./2
provided t < 1, where 7, is the non-dimensional time when yielding occurs for sufficiently

large values of the uniformly distributed external impulsive velocity V. It is evident from
equation (20a) that the predominant response would remain elastic when

Uy

sin/2r, and F=—u, (20a, b)

2V, 145 g,
—<e or p— < (21)
Jc 7 o, 201 -v)

where ¢, is the equivalent yield strain. If r > 7, then equation (13a) has the solution

uo = D sin[\/2f(t — 7o) + ¥ ] — (I——TBZﬁ) e, (22a)
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where
171/VN%2 1 — B2 1/2 N -
D :E {5 (?0) + _._._‘62)3 e_f] , Yy =tan"! ('f); tan\/Zro) (22b,¢)
Yo sin /2 ~ 2 cnl /5
“= s sin\/2t,. and &= —B2Dsin[\/2B(t — 1) + Y] (22d, ¢)

since uy, U, . and u, ., are continuous at t = 1, between the elastic and plastic stages and
provided B (i.e. 1) is time-independent. The motion of a shell is described by equation {22a)
until unloading commences at 7, where

nj2 =y
\/2:8

is given by the condition i, = 0. In order to avoid a study of unloading in the perturbation
analysis to be considered next, it is assumed when the inequality (21) is violated that the
final pattern of wrinkling is established in a spherical shell before t; when strain reversal
occurs.

Now, the solutions for u and F are expressed in the form of the infinite series expansions
(16a) and (16b). If equations (16a) and (16b) are substituted into the governing equations

(12a) and (13b), then a procedure similar to that employed to derive equation (18a) for
the static case gives

szfo'i‘

(23)

A yyy + G*ANH(A? = sin p)a,, , — g*A? cos ya,, =0 (24a)t
when assuming g is given by equation (22¢) and where

@y
2, B:D°

. DA
y =28t — o) + W gPA% = 57, and A = (24b-d)

Another equation is also obtained which is similar to equation (24a) but with b, sub-
stituted for q,,, .

A series solution for the time dependence of a,, which satisfies equation (24a) is now
sought. The general procedure which follows is similar to that developed by Stuiver [9] for
the dynamic plastic buckling of rings and is suggested by the series expansions used by
Whittacker and Watson [10] to obtain the solution of a Mathieu-Hill equation.i If

z==+

SRR S

and x =2gA? (25a, b)

S|

then equation (24a) can be rewritten

1 If the consistent set of strain and curvature relations and equilibrium equations which are developed in
Ref. [2] are used instead of equations (1) and (2), then equation (24a) is again obtained provided only those
terms involving transverse displacements (W) are retained in the curvature relations and the (A, — 1 — C,,/
C XA, — 2) term in &, (equation 18b) is replaced by (A, — 1 + C5/C,)A,. Thus, the theoretical predictions
according to these two sets of basic equations give identical predictions when A, > 1.

1 If equations (25a) and (25b) are substituted into equation {24a), then equation (24a) is recognized as a
Mathieu equation differentiated with respect to z.
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2
@ 22 T 306, + [3602 +x? (1 + ;g cos 22)](15, z

2
+ [iaﬂ + x*w (1 + ;‘qcos 22) — 4gx sin 22] ¢ =0 (26a)

when it is assumed that

G = Y, (41€% + 4,67 )b, 02 (26b)1
k=-wo
and
b= Y b (260)
k=—oc0

In order to simplify the solution only the real part of equation (26¢) with & = —1, 0 and 1
is retained in the subsequent analysis. Thus, equation (26a) becomes

. 2
84, sin 2z F 12wd, cos 2z — 2d, {3(02 + x? (1 + Y cos 22)}sin 2z
X

2
+ {w3 + wx? (l + il cos 22) — 4gx sin 22}(b0 +d,cos2z)=0 (27)
x

where d; = b, + b_;. The two coupled equations
bo(w? + x)+dyxg =0 and by2gx +di(w? + x> —12) =0 (28a, b)

immediately follow from equation (27) when employing Galerkin’s averaging conditions.}
A solution to these equations exists if

w* =6 —x? /36 + 29°x* (29)
which has a maximum value with respect to 4, when
1 D4 1/2
= T e =) e

provided 4, > 1. The mode factor A which is predicted by equations (24d) and (30) is assoc-
iated with the fastest growing mode (equation 26b). The preferred mode number according

to equation (16¢) is
1 D4 1/4
= 75 o) e

when using equation (30) and 4, > 1.
The approximate solution of equation (24a) can now be written with the aid of equations
(25a, 25b, 26b, 26c, 28a and 29)

Apn = {Bl exp[a) (; + g)] + B, exp[—w (; + g)j”(l +4 sin y) (32a)

1 In order to simplify the notation, the subscripts mn are omitted from w, 4;, A, and b;.
1 Equation (28a) is obtained by integrating equation (27) with respect to z when z, < z < z, + 7. Equa-
tion (28b) is similarly obtained, but equation (27) is first multiplied by cos 2z.
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where

9+24A41/2 3
_O+29°A)

0 gZAZ g2A2 :

(32b)

The response is elastic when 0 < 7 < 7,4, so that y = \/51' and equation (32a) becomes

where
T S, . T . =
E: = (cosh w,—= — 2 —sinh o, —T) (1 + 6, sin \/21-) (33b)
J2 @ V2
and

Fe = V2 (sinh w, Lz)(l + 8, sin «/27) (33c)
w

‘ V2

are the amplification functions of the initial displacement imperfections (1},,) and the initial
velocity imperfections (V},), respectively, and

Van'? o 2 ~vH(4, ~2
w§:6+(36+ 22) —HV{( A:)glv )+oc2(l,,—1—v)(l,,——2)} (33d)
and
2C VEa\ 2
5e=\1{A {6+(36+ 22) } (33¢)
0%n

It should be noted that the initial displacement and velocity imperfections are assumed to be
distributed in the infinite series form of equation (16a). Equation (31) predicts the preferred
mode number

C 1/2 R 4 14 4 1/4
=|— 1 2122} () —
e (Vo) {9( ) (h) (C) 36} (34a)
which for thin shells can be written
— (R 1/2
ne==/3(1 £ v) (Z) (%9) (34b)
when
2 4 4
n>1and(1#)-(§) (%) > 1. (34c)

A spherical shell commences to respond plastically at the time © = 7, provided the per-
turbation terms during the elastic stage are negligible compared with the dominant behavior.
In this circumstance, equation (32a) becomes

Ay = UL EP + Vi FP (35a)

mn mn mn mn

HSS Vol. 10 No. 12—C
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where
Ep = Er/rm mn(TO) + mn mn r(TO) (35b)
Frﬁ = E, (TO) + anFnin t(TO) (35C)
o [1 + 8, sin{/2B(t — 7o) + ¥}
mn (1 + 8, sin §)? ]
[(1 + 8, sin ) cosh{ \/, (T — 10)= — 5 £ cosy smh{ \/_ (r — ro)” (35d)t
and

V21 + 6, sin (V2B(z — 7o) + ¥)] . { B
= h —(t —
o B0+, sin P) sinhiw, \/2 (z ro)} (35¢)
and where E; (10), Eg,.(t0), Fin(to) and F;,, (7o) are evaluated from equations (33b) and
(33c) when 7 = 1,. The coefficients in equation (35a) were selected to ensure that the elastic

and plastic solutions matched at 1 = 1,.
Substituting equations (14d, 14f and 22b) into equation (30) gives

& ={1 (’5)2 i\{ffﬂz 2}”2 {%g (,11 i ;)2 (94 E (%)2 i %Z_ﬁieyz]z - 1}1/2 (6
2\C g

which may be simplified considerably if the amount of material strain hardening is small
(i.e. B2 <1 or 2 > 1). In this case, equations (16¢) and (36a) predict a preferred mode

’
Frn

number
e (2 O "

provided
) >

and where ¢, = 2¢, is the equivalent yield strain.

It is of interest to determine a critical or threshold impulse which gives a large amplifica-
tion of the perturbation displacement for a small increment of impulse. If 4, > 1, then equa-
tions (24c, 24d, 25b, 29 and 30) give

o _g_B0—Y D> 36a’a,
crit — C1ﬁ2 4&2(10 D2

G7

The minimum value of equation (37) with respect to (¥,/C)* for an elastic shell is w?,;, =

10 +2v which occurs when
Vo\?2 2 (h 2
%) = -} . 3
(C) 1 +v R) (38)

t 8, and w, are respectively equations (32b) and (29) evaluaEed in the plastic region.
t The numerical coefficient in equation (36b) is taken as 24/2 when v = 0.3.
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It is evident from equations (23, 24b, and 25a) when w = 7 that the exponential term in
equation (26b) increases rather rapidly with time before unloading commences.

However, in order for the theoretical method to predict the phenomenon of dynamic
instability, it is necessary for the amplification function EZ,, (and/or F¢,) which is associated
with the critical harmonic (n,), to be larger than unity. Now, the maximum value of the

. s . . 7 .
predominant radial displacement in the elastic case occurs when 7, = 2—5 according to

equation (20a). At =1, and w, = ®,,;, it is evident that Fy,, given by equation (33c)
is positive, while Ef, according to equation (33b) is positive if
)

g, € R

(39
y
when v = 0-3 [3], which is more restrictive than equations (34c) and (38). Thus, equation (39)
is used to define a critical velocity or threshold impulse for the elastic case since the associated
value of w,,;, is sufficient to produce a moderate amplification of the initial displacements.
The actual values of the amplification functions E, and F?, can be calculated using equa-
tions (33b) and (33c) for a particular shell. The growth of E¢, and FZ, with time according
to equations (33b) and (33c) is indicated in Fig. 2 for an elastic shell with R/k =500,
Vo/C =0-015 and v =0-3, while the variation of the largest amplification functions at
T =1, with V,/C for the same shell are indicated in Fig. 3 together with the predictions
of (39).

Equation (37) for an elastic-plastic shell with 8 < 1 (i.e. 2 > 1) has the minimum value
Werir = 24/2 When [3]

(40a)

4% 1 (h)2 e,
R

o, (L+g, \R} 40 -

EQUATION
(34b)
4000 |- !
EQUATION
(34b)
3200 800
L]
Emn Fmn
2400 600
1600 400
800 200
o
30 %o

Fig. 2. Growth of amplification functions for an elastic spherical shell with R/h = 500, V,/C =
0-015 and v = 0-3.
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Emn
1000 f~
Ty =L
250 - (108)
=
ok EQUATION
< {39)
o E 500 i
w ]
|
!
{
]
]
i
250~ ;’ Fr:n
|
|
|
{
]
i
fs
o 1 ] !
0 0.005 0.010 0015

ol

Fig. 3. Variation of largest amplification functions at r = 7, with initial impulsive velocity for
an elastic spherical shell with R/A = 500 and v = 0-3. The numbers within the parentheses { )
and [ ] are the critical modes for £, and Fg,, respectively,

If the initial kinetic energy is equated to the predominant membrane energy, then {3]
&, == pB*Vo*(1 —)/(20,) (40b)

provided the final strain which is predicted by equation (22a) with = 7, is much larger than
the yield strain (e,), or

[14% &,
o z 1—v (30¢)

¥

Thus, &, can be eliminated from equation (40a) to give the more convenient form[3]

py,t 2 Ao\ h
o, _1~v{5(1+v)f (E)' (“4od)

The values of the amplification functions Ef, and F}, can be calculated from equa-
tions (35b) and {35c) for a particular elastic-plastic shell. The variation of E?, and FF, at
T =1, with ¥,/C is shown in Fig. 4 for a given set of parameters, while the variation of
Er and FE, with time is shown in Fig. 5 for the same shell. Again, dynamic buckling could
be said to occur in an elastic-plastic shell when the magnitudes of the amplification functions
E?,and F?, which are associated with the critical harmonic are much larger than unity. Now
the predominant motion reaches its maximum excursion at 7, which is given by equation (23).
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p
1600 T“ (47))Eenn
T=Tf
1200 |-
5
L (46) P
< EQUATION  EQUATION mn
o€ gool (39) (41) [as]
w } |[
: | )
| {
| 1
L1
400~ !
‘ |
! L6
o | B - @y )
001 (44 143) g 05 40) 0.020 0025
VO
T

Fig. 4. Variation of largest amplification functions at 7 = 7, with initial impulsive velocity for

an elastic-plastic spherical shell with R/h = 200, 8; = 2-95, v = 0:33, A = 80-8 and e, = 0-0021.

The numbers within the parentheses { ) and [ ] are the critical modes for EZ, and
FP,, respectively.

Thus, at t =1,., F,, is always positive, while E;, (1,) > 0 provided (39) is satisfied. It can be
shown that E,, > 0 when w,/(26p) > 1, or

Vo\? 1=\ [h\? Jde?
Zo\ o3 LA I 40
(C) g 7(1+v) (R) T—v (40e)

which is a more restrictive requirement than (40a). Ef,..(ty) >0 when 28./w, < tanh
(wero/v’/Z) which, unfortunately, cannot be recast into a simpler form. Nevertheless, it is

}, EQUATION || EQUATION
EQUATION ' EQUATION (36b) Al

(36b) 1 (31) ! t3h

1600 800

1200 600
4 4
Emn Fon
800 400
400 200
o] (o]

[o] 20 n 40 €0

(0} (b
Fig. 5. Growth of amplification functions for an elastic—plastic spherical shell with R/k = 200,
Vo/C = 0-0265, B, = 295, v = 033, A = 80'8 and e, = 0-0021.
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clear that it might not be necessary for all the individual quantities on the right hand side
of equation (35a) to remain positive. Indeed, it does appear from some numerical results
that EZ,..(t5) > 0 is too restrictive. It is suggested, therefore, that the critical or threshold
velocity is the largest of the two values which are predicted by (39) and (40e), the latter of
which may be rewritten

V2 172 [ A \'Y*h
pPYe” ( ) 7

o, T l—v\l+v R

when using equation (40b). The predictions of (39) and (41) are indicated in Fig. 4 for a
particular elastic—plastic spherical shell.

DISCUSSION

As mentioned in Ref. [1] it is of interest to compare the results reported herein with
previous theoretical and experimental investigations into the behavior of impulsively loaded
rings and cylindrical shells since no theoretical or experimental investigations appear to
have been published on the dynamic instability of complete spherical shells.

It is observed that equation (34b) for the critical harmonict in an impulsively loaded
linear elastic spherical shell is almost identical to the prediction of Stuiver [9]: the only
differences are that Stuiver defines C2 = E/p and obtains a numerical coefficient of 2.
Equation (34b) is the same as Lindberg’s result [11] except that the magnitude of the numeri-

cal coefficient is \/ 3-9/6 or about 0-8 times as large. Of course, n, in the present case, refers
to the critical or most amplified harmonic in the displacement field of a complete spherical
shell which is expressed in terms of Legendre and associated Legendre polynomials (equa-
tion 16a), while in Refs. [9, 11] on rings and cylindrical shells, it is associated with trig-
onometric functions. It is important to remark that equation (34b) gives meaningful
results only when the inequality (34c) is satisfied. Equation (34b) then predicts accurately
the peaks in the displacement and velocity amplification curves as shown in Fig. 2 for an

elastic spherical shell with R/h = 500. With the exception of the ﬁ = \/ a_y/_E term being

replaced by /0,/E,, the form of equation (36b) for the critical harmonic in an elastic-
plastic spherical shell is similar to Stuiver’s predictions [9] for a ring.

The inequalities (21) and (34c) for an elastic shell can be arranged to provide bounds on
V,/C which in turn require R/h >2/((\/ 1 +v)e,). Thus, equation (34b) can only be used to
predict the critical mode numbers of elastic shells with R/A > 350, approximately, when
&, =2, =5 X 1073 and v = 0-3. The sign of inequality (21) is reversed if plastic flow is
required to occur during the dominant motion of an elastic-plastic shell. If this inequality
is combined with inequality (36¢) then upper and lower bounds on ayz are obtained. A

comparison of these upper and lower bounds demands 5 > M ( —C;) which must be
h™ J1+wi\Vo
satisfied if equation (36b) is to predict the critical mode number for an elastic-plastic shell.
This inequality, as anticipated, is less restrictive than the previous one for the elastic case.
For example, it requires R/h > 60, approximately, when A =9, V,/C =5 x 107 and
v =03
A further examination of inequality (21) also reveals the importance of material elasticity

+ The critical harmonics which are predicted by the various formulae in this article are always rounded off
to the nearest integer.
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for thin shells and material plasticity for thicker ones. The equality in (21), which gives the
upper limit of elastic response or lower limit of plastic behavior, may be recast into the form

=V W, h . _— .
J2 —C—? =g, =2 -k—” R’ since €, = 2e, and e, = W /R, where W, is the transverse dominant

&, R . . .
deflection at the onset of plastic flow.t Thus, —f = ;—h which indicates that the dominant

transverse deflection-to-shell thickness ratio at yield increases as R/h increases. If ¢, =
5% 1073, then —Wy =0-0254 when R/h=10, and Wy = 2-50Ah when R/h = 1,000.

The concept of a threshold or critical impulse has been used by a number of investigators
to mark the smallest impulse that a structure can tolerate without excessive deformation.
This definition is somewhat arbitrary, particularly for the elastic case, which hinders com-
parisons between the theoretical predictions of various authors. Moreover, it is evident from
Figures 3 and 4 that the displacement amplification function is a highly non-linear function
of the impulsive velocity (V). The threshold velocity according to equation (39) for a linear
elastic spherical shell has the same form as Lindberg’s for a cylindrical shell [12] but is

6:33 }'/?

{4(1 v
velocity for an elastic-plastic spherical shell than Lindberg’s [12] corresponding result for
an elastic-plastic cylindrical shell with the same material and geometrical parameters. As
mentioned above, these differences could be attributed to differences in definition as much
as to differences in geometry. It does not appear possible to obtain simple expressions for the
threshold velocities for cylindrical and spherical shells which have a common precise
definition due to the different forms of the theoretical solutions. However, it would be
worthwhile to generate amplification-impulsive velocity curves, such as those presented in
Figs. 3 and 4, for both cylindrical and spherical shells with the same geometrical and
material parameters. A comparison between these numerical results would then indicate
whether spherical shells were indeed stronger than cylindrical shells as suggested by the
expressions for the critical velocities.

The growth of the displacement and velocity amplification functions with time for typical
elastic and elastic—plastic spherical shells are shown in Figs. 2 and 5, respectively. It is
evident from these figures and Fig. 2 in Ref. [1] for the rigid—plastic case that the displacement
functions experience larger amplifications than the velocity functions. This suggests that
shape imperfections might exercise a more significant influence on the instability of spherical
shells than variations in the initial velocity field.

It should be remarked that the constitutive equations do not cater for the influence of
material strain-rate sensitivity which has been examined for cylindrical shells by Florence
{13]. In addition to the various simplifications and approximations which are introduced in
the theoretical analyses, the influence of transverse shear stresses and deformations have
been disregarded. Moreover, the influence of unloading has been neglected so that the
effect of possible plastic behavior after t =1, has not been considered.

Finally, it should be remarked that only three terms have been retained in the series
expansion (26c) which was used in the solution of an elastic-plastic spherical shell. The
retention of more terms in this series would present complications but an examination of the
importance of these additional terms might be one of many aspects worthy of further study.

times larger. It can be shown that equation (41) predicts a larger critical

+ W, is the dominant transverse deflection at the onset of plastic flow when the additional strains due to
the perturbed terms are neglected.
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CONCLUSIONS

A theoretical investigation has been undertaken into the dynamic instability of complete
spherical shells loaded impulsively. If the various inequalities in the text are satisfied, then
the elastic theory could be used to obtain the response of shells with large R/A ratios (e.g.
R/h>350), while shells with small R/A ratios (e.g. 10< R/A<60) could be examined with
the rigid—plastic theory which was presented in Ref. [1]. The elastic-plastic theory could be
used to study those shells with intermediate values of R/A. Unfortunately, no experimental
results are available to examine the validity, or otherwise, of the various theoretical pre-
dictions. However, the forms of the expressions for the critical mode number and threshold
velocity are similar to those developed by various authors for cylindrical shells, except that
the magnitudes of the numerical coefficients are different. The threshold velocities for the
elastic, elastic—plastic and rigid—plastic spherical shells are larger than the corresponding
values which have been published previously for cylindrical shells with the same R/A ratios
and material parameters. The rigid—plastic theory presented in Ref. [1] predicts critical mode
numbers for spherical shells which are somewhat similar to the corresponding experimental
values on cylindrical shells with 10 < R/# < 30 which were reported in Refs.[14-16].

COMMENTS ADDED AFTER REVIEW

The authors wish to thank a reviewer of this article for pointing out MclIvor and Son-
stegard’s [17] article which had escaped our attention. McIvor and Sonstegard used a
different procedure to examine the axisymmetric response of a linear elastic closed spherical
shell which was subjected to a nearly uniform radial impulse. Mclvor and Sonstegard show
that the initial elastic response is governed by a Mathieu equation.t Thus, the amplitude of a
member (or members) in the displacement series grow exponentially with time when the
associated parameters lie within an unstable region of the Mathieu stability diagram. How-
ever, no information was obtained concerning the amplitude-wave number or amplitude-
impulsive velocity relations as such shown for the linear elastic case in Figs. 2 and 3 of the
present article. Clearly, threshold impulses cannot be determined without these results.

MclIvor and Sonstegard then examined the long term elastic behavior for which it was
necessary to retain additional terms in the governing equations. An approximate set of
coupled equations was solved numerically for R/A = 100 and V,/C = 4:95 x 1073.% These
numerical results show that an essentially complete cyclic energy exchange occurs between
the dominant mode and certain parametrically excited composite (membrane and bending)
modes. This aspect of behavior was not investigated in the present article because the
principal aim was to study dynamic instability which occurred prior to unloading.

It turns out that the elastic solution presented herein is not valid for the particular case
considered by Mclvor and Sonstegard because the inequality (34c) is not satisfied. Unfor-
tunately, no other numerical results are presented in Ref. [17] so that a comparison cannot
be made between the predictions of the two elastic methods. As intimated previously, it may
be necessary to include additional terms in the series expansion (26¢) in order to examine the
elastic behavior of thicker shells than is presently permitted by the various inequalities. This
appears to be a topic worthy for future study.

t See a previous footnote.
1 This value is different to that quoted in Ref. [17] because Mclvor and Sonstegard do not define C as
given by equation (12d).
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Mclvor and Sonstegard [17] restricted their attention to both axisymmetric and linear

elastic response. However, the importance of material plasticity can be demonstrated for the
particular case examined in Ref. [17]. Equation (20a) with R/A = 100, V,/C = 4.95 x 1073

and siny/2 © = 1 predicts W = 0-35h when the elastic yield limit is reached (inequality (21)

is

an equality when ¢, = Nf2 Vo/C =7 x 1073, Itis evident if imperfections are present that

plastic flow would occur when the dominant transverse deflection is an even smaller
fraction of the corresponding shell thickness.
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AGeTpakT — [IpeAIPHHHMAETC  TEOPETHYECKOE HCCIENOBAHUE BOIPOCA IOUHAMMYECKOH
MTOTEPH YCTONYHBOCTHM TIOJIHBEIX CHOPHIECKMX 000IIOUEK, BHE3AMHO HArPYKECHHBIX M M3TOB/ICH-
HBIX, TMOO U3 TMHEHHO YIIpyroro, MM60 U3 yOPYroro-riacTHYHOro MaTepualta. YKasbiBaeTcs,
YTO HEKOTOpBbIE TAPMOHHKH OBICTPO YBEIIMHMBAIOTCS M ABIAIOTCA HPUYHHOM, HJIS KOTOPOH
060JI0MKH TIPOSBISIIOT CKIAOYATYI0 (GOpPMY, H300PaKEHHOM YMCIIOM KPHTHYECKHX GopM
BBUTYYMBAHHUSA. DTH YUCIa TOAOOHK! [UIsl CHEPHYECKHX H LMIMHAPHYECKHX YIPYTUX 060I0YeK,
06J1a1arouIX TOXE CAaMBbIMH OTHOMEHHSIMH R/n ¥ mapameTpamMu Matepuasia, HO MOTYT ObITb
6OIBIITAMH WJIH MEHBUIMMH [JIS YIIPYTOro MINACTHYECKHX cepuuecknx obonoyek, B 3aBHCH-
MOCTH OT 3HA4Y€HHMH pa3HbIX HmapameTpoB. OnpenensioTcs, Takke, MOPOrOBBIE CKOPOCTH, C
LUEJIBIO ITONYHYEHWsl CAMOM MEHBINEH CKOPOCTH, KOTOPYIO 000JI0YKa MOXET NOMycKaTh Oe3
ype3mepHo# nedopmann. [Toporossie CKOPOCTH IS yIPYTHX M YIPYTO-MNACTHYECKHX chepu-
4yecKnX 060s104eK GONbLIe O CPABHEHHIO C TAKMMHU Xe, KOTOPBIE GhIIH OIyHIMKOBAHEI PaHbILIE
IUTS UMITHHAPUYECKAX 000N0oueK, UMEIOLINX TOXE CaMble OTHOHICHHMS R/n M mapameTpsl
marepuana,
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APPENDIX

Constitutive equations for an elastic—plastic material

The constitutive equations for an arbitrarily shaped shell which is made from an elastic—
plastic material are developed in Ref [3]. This Appendix contains a brief discussion of the
derivation of equations (4a)-(4f).

If E, is the tangent modulus of the strain-hardening portion of the equivalent stress (a,)
vs equivalent strain (g,) curve for a material, then the Prandtl-Reuss constitutive equations
can be written

VT4 E T
. A-1/ W
el = AE O‘(z) —agfo Yoo |[ 011
£, ~oto Bo 502 = YoPBo || 622
P %oYo Bovo }’_gi G
12 3 5 ) 12,

for the particular case of plane stress, where J, = ¢,%/3, 6, =Fo,,, F = (1 — q + g% + 3r)'/3,
G = 645,/0,1, ¥ = 043]011, % =(2 — @)/F, By =(1 — 2¢)/F and y; = 6r/F. If the shear stress
in the plastic range is small then r < [ and y ==0. In this circumstance, combining the plastic
strain rates with the corresponding elastic strain rates from Hooke’s law gives

8y = (C16yy ~ C12622)/4E, &35 =(C3 63, — C1,0,1)/AE, and &, + &y = 21 + v)dy,/E,
where

Ci=4+( =D Co =4+ —DPy% Cia =4v + (1 — Dy fo. C3 = AN2 + 2v),

A=(C,C, = CM/4 2 =2 — g1 —g +¢5) 7" and By = (1 — 29)(1 —g+¢*) ™"

These equations may be inverted to obtain the stress rates which are then integrated with
respect to z across the wall thickness of a shell to give the membrane forces and bending
moments in the form of equations (4a)-(4f) provided ¢ and A are independent of z and
éij == é,‘j + Z’%ij'



